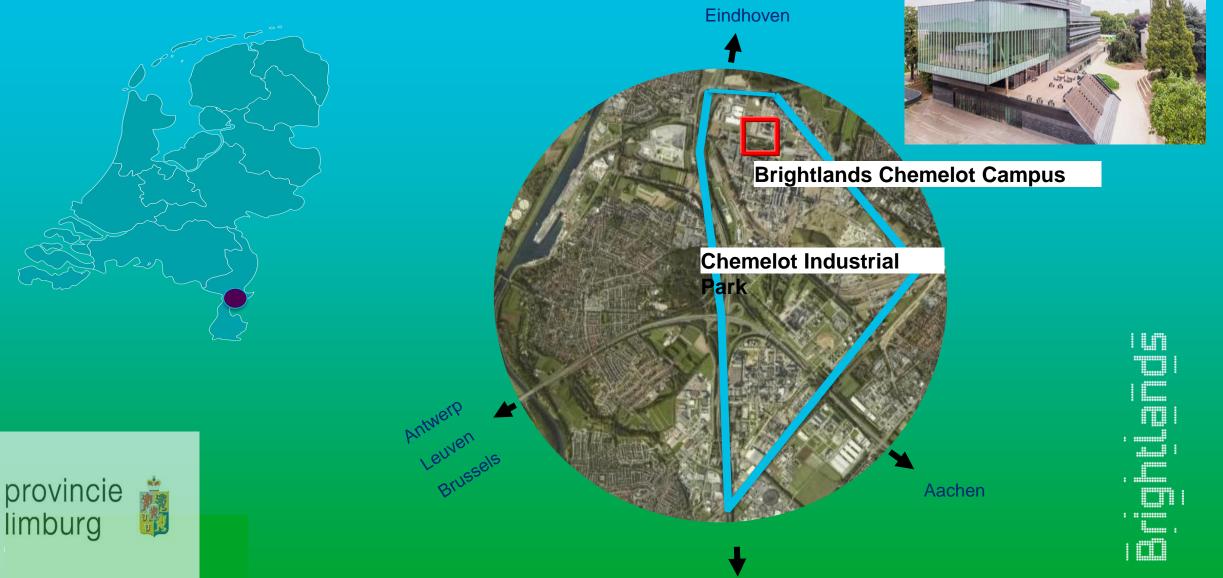
Model Demonstrator Region Chemelot Trilateral Strategy Innovation Table


Lia Voermans

Director Innovation Strategy Brightlands Chemelot Campus

Brussels 27.09.2018

Brightlands Chemelot Campus & Chemelot

Chemelot Industrial Park & Brightlands Chemelot Campus

Missionplan Climate-Neutral Site in 2050!

Ca. 1900 employees, 750 students20 ha R&D and scale-up infraCa. 80 innovation related organisations

- Ca. 6000 employees
- 800 ha, 60 large scale plants
- 80 companies

STEPPING STONE Trilateral Region Chemical Industry

Brightlands Chemelot Campus

Trilateral Strategy for the Chemical Industry

→ Commissioned by

The Netherlands, the Flemish Region, Federal State of North Rhine Westphalia

➔ Transition Mission

A sustainable &T competitive chemical industry cluster by 2050

→ Three tables:

Innovation- Energy- Infrastructure

➔ Innovation table;

Chaired by Brightlands Chemelot Campus

Trilateral strategy for the chemical industry

Striving to become the world's engine for the transition towards a sustainable and competitive chemical industry cluster in 2030.


Cross-border cooperation between the Netherlands, Flanders and North Rhine-Westphalia.

Trilateral Region Chemical Industry The Largest Chemical Cluster in the World !

INTERCONNECTED

- 220b€ of turnover
- 12% of the GDP
- 40% of the European turnover
- 240.000 jobs

The chemical industry in the trilateral region: Challenges

Chemical Industry Transformation – Game changers

Footprint transition

Digital transition

Driver: society

Driver: technology

Climate policies: an opportunity

- All processes everywhere will require redesign
- Breakthrough technology is key to future competitiveness
- 2030 is tomorrow, 2050 the day after

Three seemingly different government programs...

NRW

Frame of German research policy

- German Program of Resource Efficiency Progress II (2016)
- Plan for Climate Protecting 2050 (2016)
- 6th Energy Research Program (2016)
- Sustainability Strategy (2002)
- The new High-tech Strategy(2014)
- Research for Sustainable Development (FONA3, 2015)

German public funding programs

- Chemical Processes and Material Usage (2010 2016)
- CO2Plus Broadening the Feedstock Basis (2016 2019)
- CO2Min –Pilot project Carbonatisation (2017 2020)
- Kopernikus Project P2X (2016)
- Carbon2Chem (since 2016)
- Ways to industrial usage (Carbonisation, Photocatalysis, Biotechnology and other innovative catalytic processes) – in preparation
- PHOENIX Initiative

FL

Innovation programs

- Renewable Chemicals: Using nature's power
- Process Intensification & Optimization: Faster, smaller, better
- Side stream Valorization: Waste becomes resource
- Advanced Sustainable Products: Clean and green

Strategic topics

- Development of bio-aromatics from lignin origin
- Carbon capture and utilization (CCU)
- Sugar as a resource for bio based chemicals
- Industry 4.0 in chemical and plastics production

NL

Lower TRL-levels

- CO/CO₂ conversion to chemicals
- Novel energy carriers for sustainable energy (H₂, ammonia)
- Bio refinery of various sorts of biomass
- Bio solar technologies for chemicals
- Electrochemical conversion for materials/chemicals
- Algae as source of chemicals
- CH₄ decarburization
- Chemical recycling of polymers
- Smart materials providing solutions for other sectors
- Nanotechnologies / process efficiency

Higher TRL-levels / implementation

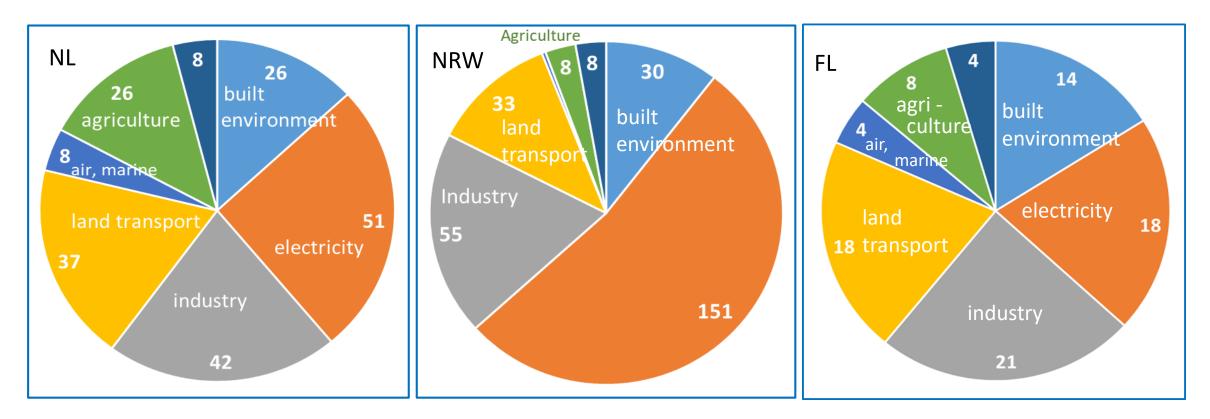
- Circular heat/heat pump technology
- Smart industry/digitization/censoring
- Process intensification
- CO₂ capture/storage
- Bio-methanol/Bio-ethanol/Bio-ethylene
- Gasification of waste
- Bio based chemicals/plastics from sugar
- Waste/sewage water to chemicals
- Mechanical polymer recycling
- Light materials for automotive/air transport/other applications
- Algae for fatty acids
- Manure to biogas

...that cover the same challenges

- German Program of Resource Efficiency Progress II (2016)
- ro ecting 2050 (2016)
- Program (2016)

- CCS

- Industry 4.0


- Reflewable Citerion & Optimization Refer, smaller better
 Process Intensification & Optimization Recycling

Power-to-X

Electrification

Bioaromatics

Climate Policies: all of us will be asked to take our share

NL:	195 Mt CO ₂ -eq		NRW: 285 Mt CO ₂ -eq		FL:	87 Mt CO ₂ -eq	
	Refineries Chemical industry	11 Mt 22 Mt	Refineries Chemical industry	7 Mt 16 Mt		Refineries Chemical industry	5 Mt 10 Mt

Industry themes: cover >80% of our total emissions

Source	Use	Trilateral Impact
High-Temperature heating >400 ∘C	Combustion of fossil fuel for steam cracking, refining	20-35 Mtpa CO _{2-eq}
Hydrogen production	Steam reforming, ammonia, hydrogenation	10 Mtpa CO _{2-eq}
Low-temperature heat waste	Cracker of the future	10-15 Mtpa CO _{2-eq}
Grey electricity use	Electrolysis, electrical equipment	20 Mtpa CO _{2-eq}
Plastic waste	Waste incineration	6 Mtpa CO _{2-eq} plastic soup

Report

Trilateral Innovation Workshop

Friday, April 13, 2018

- Ca. 80 participants
- Highly interactive workshops
- Industry driven !
- Clusters of interest identified

A shared Trilateral Region agenda for competitiveness through innovation

SUPRAREGIONAL INNOVATION THEMES

Themes that align National Programs Innovation Roadmaps

Themes that bind industry, knowledge institutes and government

Themes that create a competitive and sustainable industry in the trilateral region

Outcome

Trilateral Themes	Region Agenda	ENABLING TOPICS	Next step Workshop dates
1. CO ₂ as a feeds	tock source (CCU)		3 Jul
2. Electrification in high-T cracking3. Electrochemical conversion	Start-ups & Scale ups Demo- and pilot plants Funding & Innovation	3 Jul	
		20 Sep	
4. Carbon circula		20 Sep	
5. Hydrogen of th	ie future	Hurdles	2 Oct
6. Biomass as a fe		2 Oct	
7. Industry 4.0 fo	r digital transformation		11 Oct

TRILATERAL REGION AGENDA

Next Step Innovation Workshop ' CO2 as a Feedstock Source'

The CCU Innovation in cooperation with DG Grow / led by Ecofys

Three topics emerged from the discussion on CCU:

- 1. Carbon capture technology
- 2. Catalyst for transforming non-pure CO2
- 3. New products directly from CO2

Next Step: Roadmap & Plan of Action

CCU- PILOT

Vlaanderen-Nederland

Europees Fonds voor Regionale Ontwikkeling

Governmental support
Project EnOp

TRILATERAL STRATEGY INNOVATION TABLE

PROPOSTION TOWARDS EUROPE:

- CONSORTIA ON KET's
- MISSION DRIVEN ROADMAPS

Thank you for your attention

For more information:

Lia Voermans@Brightlands.com